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Computational modelling reveals 
distinct patterns of cognitive and 
physical motivation in elite athletes
Trevor T.-J. Chong1, Matthew A. J. Apps2, Kathrin Giehl4, Stephanie Hall2, Callum H. Clifton2 & 
Masud Husain   2,3

Effort can be perceived both cognitively and physically, but the computational mechanisms underlying 
the motivation to invest effort in each domain remain unclear. In particular, it is unknown whether 
intensive physical training is associated with higher motivation specific to that domain, or whether 
it is accompanied by corresponding changes in cognitive motivation. Here, we tested a group of elite 
Oxford University rowers, and compared their behaviour to matched non-athletic controls. We trained 
participants on two tasks involving cognitive or physical effort. They then decided between a baseline 
low level of effort for low reward, versus higher levels of effort for higher rewards. Separate choices 
were made for the cognitive and physical tasks, which allowed us to computationally model motivation 
in each domain independently. As expected, athletes were willing to exert greater amounts of physical 
effort than non-athletes. Critically, however, the nature of cognitive effort-based decisions was 
different between groups, with a concave pattern of effort discounting for athletes but a convex pattern 
for non-athletes. These data suggest that the greater physical drive in athletes is accompanied by 
fundamentally different patterns of cognitive effort discounting, and suggests a complex relationship 
between motivation in the two domains.

The motivation to overcome effortful costs in pursuit of rewards is fundamental to everyday life. Students must 
decide how much cognitive effort to put into studying for an exam. Athletes must decide how much physi-
cal training to endure to win their next meet. Recent research has focused on understanding the cost-benefit 
trade-offs that are inherent to motivated behaviour1–3. These studies have emerged from a rich literature on 
non-human animals, which has traditionally focused on the willingness to pursue rewards associated with physi-
cal effort costs4. Importantly, however, effort can be experienced, not only in the physical domain, but cognitively 
as well5–7. A key question that remains is to what extent the mechanisms underlying motivation in one domain 
are generalisable to those in an alternate domain. Are individuals who are more physically motivated necessarily 
also more cognitively motivated?

Few studies have compared motivation across the cognitive and physical domains, and it therefore remains 
unclear whether high levels of motivation in one domain are necessarily accompanied by high motivation in the 
other. Recently, we used a neuroeconomic approach to determine the degree to which individuals are willing to 
invest cognitive or physical effort in return for reward8. This approach was based on the principle that effort is 
aversive9, and that rewards are devalued by the effort associated with acquiring them (‘effort discounting’)10,11. 
Cognitive and physical effort discounting recruited a largely overlapping network of domain-general regions, 
including the dorsomedial prefrontal cortex and dorsal anterior cingulate cortex8. This general finding is broadly 
consistent with the only other human neuroimaging study on cognitive and physical motivation, which also pro-
vided evidence for a domain-general, common network of brain regions involved in motivation12.

In addition to a domain-general network, there is also emerging evidence that rewards are discounted in 
distinct patterns across different domains of effort. In rodent studies, cognitive and physical motivation involve 
dissociable neurobiological substrates, with the amygdala playing a distinct role in cognitive effort discount-
ing13,14. The distinct nature of cognitive and physical motivation was also evident in our recent human study, 
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which showed that effort discounting in the two domains were described by separate computational functions. 
Specifically, cognitive effort discounting was best modelled as a convex (hyperbolic) function, in which changes at 
the lower levels of effort resulted in greater reward devaluation than changes at higher levels. In contrast, physical 
effort discounting was best modelled as a concave (parabolic) function, which describes the opposite pattern15–20. 
In keeping with the animal literature, the imaging data from this study also revealed dissociable substrates for 
cognitive and physical motivation, with the amygdala being uniquely sensitive to cognitive effort discounting8.

Here, we ask whether high motivation in one domain of effort (e.g., physical) is necessarily accompanied by 
high motivation in the other (e.g., cognitive)? One population that offers a unique insight into this issue are elite 
athletes. Elite athletes undertake frequent, intense, physical training sessions, with the goal of excelling at their 
sport21–23. Indeed, one of the most significant factors that affects sporting performance is the perceived physical 
demand of a task: as effort ratings increase, athletic performance declines24. Athletes are specifically trained to 
overcome these increases in perceived physical demand in pursuit of reward. Many studies in sports psychology 
have examined the relationship between motivation and performance25, and more recently some have proposed 
‘psychobiological models’ of sporting performance that incorporate effort-based decisions26,27. To our knowledge, 
however, no study has sought to define the computational mechanisms underlying motivation and effort-based 
choice in athletes, either within or across the physical and cognitive domains.

In this study, we tested a group of elite Oxford University rowers, and compared their performance to that of 
age- and education-matched non-athletes. We used a computational approach to model participants’ responses, 
by calculating the ‘subjective value’ (SV) of engaging in an effortful action on every trial. By having participants 
make separate decisions for cognitive and physical effort, we were able to determine how effort discounting mech-
anisms differed between the physical and cognitive domains, and between the athlete and non-athlete groups.

Results
Participants.  We tested 20 elite rowers, and 20 age- and education-matched non-athletic controls (Table 1). 
All participants were undergraduate or graduate students at the University of Oxford. Athletes were elite rowers 
competing at university or national level, and were recruited from the top crews of the University of Oxford 
rowing squads (the Oxford University Boat Club, Women’s Boat Club, Lightweight Rowing Club, and Women’s 
Lightweight Rowing Club). Each squad trains twice a day, six days per week, with the rowers in our study engag-
ing in an average of 20.8 ± 0.4 hours of training per week over the 2.3 ± 0.5 years they had been in their respective 
squads. These characteristics are consistent with previous studies that have defined ‘elite‘/’expert’ athletes based on 
their level of competition28,29, experience21,23, and duration30,31 and frequency32–34 of training. Non-athletes had no 
history of prior competitive athletic experience. No participant had any neurological or psychiatric comorbidities. 
Participants were excluded if their reinforcement rates in the physical and/or cognitive effort tasks were <80% 
(two non-athletes, not included in the final sample of N = 20 + 20). This study was approved by the University 
of Oxford’s Central University Research Ethics Committee (MSD-IDREC-C1-2014-037), and was conducted in 
accordance with local guidelines. All participants gave written, informed consent for their participation.

Behavioural Results.  The experimental paradigm has been described previously8. Participants were first 
trained on two separate tasks – one in which we parametrically varied cognitive effort while holding physical 
demands constant, and the other in which we varied physical effort while holding cognitive demands constant 
(Fig. 1A,B). After training, participants undertook the critical choice phase, during which they made economic 
decisions based on the amount of effort they were willing to trade off in return for varying amounts of reward 
(Fig. 1C).

The cognitive effort task utilised a rapid-serial-visual presentation (RSVP) design. Participants had to fixate on 
a central letter stream, while monitoring one of two other RSVP streams on either side for a target ‘7’ (Fig. 1A). 
Three task-irrelevant distractor streams surrounded each of the two target streams35. At the beginning of the 
trial, a central arrow cued participants to the initial target stream (left/right). During the trial, participants had to 
continue monitoring the central stream for further cues (the number ‘3’) to switch their attention to the opposite 
target stream. We parametrically varied cognitive effort by increasing the number of times (1 to 6) that attention 
had to be switched between the left/right target streams.

In the physical effort task, participants had to exert one of six levels of force on a hand-held dynamometer 
(Fig. 1B). To standardise force requirements across individuals, effort levels were defined as percentages of each 
participant’s maximum voluntary contraction (MVC; 8, 13, 18, 23, 28, 33%). MVCs were determined for each 
participant at the beginning of the study. Note that cognitive and physical effort trials were identical in duration 
(14 seconds) to eliminate the effect of temporal discounting on later choice behaviour36,37.

Athletes (n = 20) Non-Athletes(n = 20) Group Difference

Age 22.7 ± 0.62 22.8 ± 0.51 t(38) = 1.13, p = 0.27

Education (years) 14.6 ± 0.43 15.6 ± 0.44 t(38) = 1.70, p = 0.10

Gender (M:F) 7:13 10:10 χ2(1,40) = 0.41, p = 0.52

Duration of Training (hours/week) 20.8 ± 0.4 0 ± 0 t(38) = 57.5, p < 0.001

Years in Squad 2.3 ± 0.5 0 ± 0 t(38) = 4.87, p < 0.001

Table 1.  Participant demographics (mean ± 1 standard error). Significant group differences are indicated in 
bold.
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The order of cognitive and physical effort tasks was counterbalanced across participants. All participants com-
pleted 60 trials (10 per effort level) in each task to reinforce behaviour. Participants were awarded one credit for 
each successfully completed trial, and were informed that these credits would contribute to their payment at the 
end of the study. The amount of training ensured that participants were rewarded on almost every trial at each 
level of effort.

Following the training phase, participants engaged in the critical choice phase (Fig. 1C). On each trial, par-
ticipants were required to choose between a fixed low-effort/low-reward ‘baseline’, and a variable high-effort/
high-reward ‘offer’. The baseline was associated with the lowest level of effort for the lowest reward (1 credit), 
whereas the offer was associated with a greater amount of effort (Levels 2–5) in return for greater reward (2, 4, 6, 
8, 10 credits). Decisions were made separately for the cognitive and physical effort tasks. To eliminate the effect 
of fatigue, participants were only required to reveal their preferences, but were not required to execute them. 
Instead, they were told that ten of their choices from each domain would be randomly chosen for them to execute 
at the conclusion of the experiment, and their remuneration would be based on these trials.

Behavioural Training.  First, we confirmed that our cognitive and physical effort manipulations were successful 
in objectively increasing task load (Fig. 2). In the cognitive effort task, we operationalised performance in terms 
of target detection sensitivity, d′ (Z(Hit) − Z(False alarm)) (Fig. 2A). We compared d′ as a function of Group 
(non-athletes, athletes) and Effort Level (1–6) in a mixed-design repeated measures ANOVA. This demonstrated 
a significant main effect of Effort (F(5, 190) = 22.2, p < 0.001), with Bonferroni-corrected pairwise comparisons 
indicating that d′ progressively reduced with increasing effort. Importantly, however, neither the effect of Group, 
nor the two-way interaction, was significant (Group, F(1, 38) = 3.03, p = 0.09; interaction, F(5, 190) = 1.00, 
p = 0.42).

In the physical task, performance was measured as the proportion of time in each trial that participants 
were able to maintain their force within the target window (Fig. 2B). The analogous ANOVA revealed a signifi-
cant main effect of Effort, and a Group × Effort interaction (Effort, F(5,190) = 92.1, p < 0.001; Effort × Group, 
F(5,190) = 8.09, p < 0.001). This showed an overall decrease in performance with increasing effort across both 
groups, with a group difference only at the highest effort level, at which athletes were able to maintain their force 
for longer than non-athletes (athletes 82 ± 1.8%, vs non-athletes 73.8 ± 1.8%, p = 0.002). Together, these analyses 
confirm that our cognitive and physical effort paradigms were effective in modulating task load.

Figure 1.  Experimental paradigm. Participants were trained on two separate tasks which parametrically 
manipulated (A) cognitive effort, and (B) physical effort. Each trial began with a blue or red pie-chart 
indicating the up-coming level of cognitive or physical effort, respectively. (A) The cognitive effort task required 
participants to detect a ‘7’ in one of two target RSVP streams to the left or right of fixation (denoted by ‘F’ and 
‘Q’ in this example). The target streams were each surrounded by three task-irrelevant distractor streams. An 
arrowhead at the beginning of the trial indicated the initial target stream. While monitoring the target stream, 
participants also had to monitor the central stream for a cue (‘3’) to switch their attention to the alternate target 
stream. We manipulated cognitive effort as the number of times individuals had to switch their attention from 
one target stream to the other. (B) In the physical effort task, individuals were required to maintain a sustained 
force on a hand-held dynamometer at one of six levels of force, indexed to their specific MVC. (C) In the choice 
phase, participants indicated their preference between a fixed, low-effort/low-reward baseline, and a variable 
high-effort/high-reward offer.
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Finally, we wished to confirm that, despite the decrements in performance with increasing effort, there were 
no group differences in the ability to be successfully rewarded at each effort level (Fig. 2C,D). Reinforcement rates 
were calculated as the proportion of trials that individuals were successfully rewarded at each effort level. Overall 
reinforcement rates for both tasks were very high (96.5% for cognitive effort; 98.8% for physical effort). In the 
cognitive effort task, a Group × Effort ANOVA did not reveal any significant results (Effort, F(3.8, 145) = 1.04, 
p = 0.39; Group, F(1,38) = 0.29, p = 0.59; Effort × Group F(3.8, 145) = 0.96, p = 0.43). The analogous ANOVA 
on the physical effort task showed a significant main effect of Effort, indicating differences between low and high 
levels (F(2.6, 99.4) = 6.6, p = 0.001; level 2 > 6 and level 3 > 5, both p = 0.04)). Importantly, however, neither the 
effect of Group, nor its interaction with Effort, were significant (Group, F(1,38) = 0.07, p = 0.79; Group × Effort, 
F(2.6, 99.4) = 2.4, p = 0.08).

Overall, these analyses indicate that: (i) both the cognitive and physical effort tasks were successful in manip-
ulating load, and (ii) despite the increase in load, there were no group differences in the rate at which individuals 
were reinforced at each level of effort.

Choice Behaviour – Effort and Reward Sensitivity.  Effort Sensitivity. Next, we asked whether there were any 
behavioural differences in effort sensitivity across the two domains. We analysed the proportion of trials in 
which participants accepted the more effortful offer, as a function of increasing Effort (Fig. 3A,C). A three-way 
mixed repeated-measures ANOVA on the between-subjects factor of Group (rowers, non-rowers), and the 
within-subjects factors of Domain (cognitive, physical) and Effort (2–6) was performed. This showed a main 
effect of Effort, with higher effort levels chosen consistently less frequently than lower effort levels (F(2.39, 
76.9) = 120, p < 0.001; p-values for all pairwise comparisons <0.05).

Although the main effect of Group was not significant (F(1,38) = 1.81, p = 0.19), it was involved in signifi-
cant higher order interactions (Domain × Group, F(1, 38) = 6.94, p = 0.01; Domain × Effort × Group, F(1.90, 
72.2) = 5.16, p = 0.01). Decomposing these interactions with post-hoc Bonferroni-corrected t-tests revealed 
that athletes and non-athletes differed only in effort sensitivity for the higher levels of physical effort (level 3, 
p = 0.03; level 5, p = 0.02), but there were no significant group differences in choice for any level of cognitive effort 
(all p-values > 0.14). The remaining main effects and interactions were not significant (Domain, F(1,38) = 2.46, 
p = 0.125; Effort × Group, F(2.02, 76.9) = 0.51, p = 0.60; Domain × Effort, F(1.90, 72.2) = 2.27, p = 0.11). 
Together, this suggests a difference in effort sensitivity between athletes and non-athletes only at the higher levels 
of physical effort.

Reward Sensitivity. The complementary analysis on offer acceptance as a function of Reward revealed a sig-
nificant main effect of Reward (F(2.29,87.2) = 136.7, p < 0.001), such that successive levels of reward were chosen 
increasingly frequently (all p < 0.05; Fig. 3B,D). There was also a significant main Domain × Group interac-
tion (F(1,38) = 6.05, p < 0.05), which indicated that athletes were more inclined to accept all levels of reward 
than non-athletes, but only when the effort required was physical (p = 0.03), and not cognitive (p = 0.71). No 

Figure 2.  Results from the cognitive (blue) and physical (red) training phase. Athletes are indicated in darker 
colours, and non-athletes in lighter colours. (A,B) Objective performance (d′ in the cognitive effort task, and 
% time-in-window in the physical effort task) decreased in both the (A) cognitive and (B) physical tasks as a 
function of effort. This confirmed the ability of our paradigms to modulate task demand in the corresponding 
domains. The only group difference was at the highest level of physical effort. (C,D) Despite increasing 
cognitive/physical load, there were no group differences in reinforcement rates in either the cognitive (C) or 
physical (D) tasks.
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other main effects or interactions were significant (Domain, F(1,38) = 1.95, p = 0.17; Reward × Group (F(2.30, 
87.2) = 1.22, p = 0.31; Domain × Reward, F(2.77,105.4) = 0.63, p = 0.65; three-way, F(2.77, 105.4) = 0.70, 
p = 0.54). Together, these results indicate that the two groups differed in choice preference only in the physical, 
and not the cognitive, domain.

Logistic Regression of Choice Behaviour.  Next, we wished to verify that participants’ choices were not merely 
driven by risk aversion (i.e., a lower likelihood of accomplishing the higher levels of effort). This was unlikely to 
be the case, given the very high reinforcement rates (>95%) in the training phase of both tasks. Nevertheless, 
to definitively confirm that the probability of succeeding at each level did not affect choice preference, we per-
formed a logistic regression on the effect of reinforcement rates, rewards and effort on choice (Supplementary 
Data). Importantly, this analysis revealed that reinforcement rates did not predict choice behaviour in either 
domain (cognitive, p = 0.28; physical, p = 0.53), but that effort and reward did so in the predicted directions in 
both domains (all p-values < 0.001). We also asked whether performance itself (i.e., d′ for the cognitive task, and 
time-in-window for the physical task), in addition to effort and reward, could account for choices. This analysis 
again revealed that performance did not affect choice (cognitive, p = 0.41; physical, p = 0.99). Together, these 
analyses confirm that the effort discounting seen in our study was driven by an aversion to effort, rather than 
probability discounting.

Computational Modelling of Choice Behaviour.  The behavioural data showed an expected difference in physical 
motivation between athletes and non-athletes, with little difference in cognitive motivation. However, our pre-
vious work using the same paradigm has shown that computational models may be a more sensitive approach 
to probing differences in choice behaviour8. Thus, using a similar approach, we asked whether the pattern of 
effort discounting differed across groups. Although many functions have previously been used to computationally 
model effort discounting15,16,18,38,39, three functions were selected to capture the patterns that we predicted based 
on our recent study with the identical paradigm8. Specifically, we used linear, hyperbolic and parabolic functions 
to fit choices made in both tasks:

= ⋅ − ⋅Linear SV t R t k E t: ( ) ( ) (1 ( )) (1)

= ⋅
+ ⋅

Hyperbolic SV t R t
k E t

: ( ) ( ) 1
1 ( ) (2)

= − ⋅Parabolic SV t R t k E t: ( ) ( ) ( ) (3)2

Figure 3.  Behavioural data revealed differences between athletes and non-athletes in physical, but not 
cognitive, effort discounting. Proportion of accepted offers are shown as a function of (A,C) Effort and (B,D) 
Reward for the (A,B) Cognitive Effort and (C,D) Physical Effort tasks. Athletes chose the higher effort levels 
more frequently than non-athletes (Levels 4 and 6), for which they needed to incentivised with proportionally 
greater rewards (*p < 0.05).
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where SV(t) is the subjective value of the offer on trial t; R is the reward in credits (2, 4, 6, 8, 10); E is the effort 
level (0.2, 0.4, 0.6, 0.8, 1.0); and k is a subject-specific effort discounting parameter, with higher k values indicating 
steeper discounting functions. Each participant’s discounting function is referenced to the SV of the baseline offer 
(one).

The different shapes of these three functions reflect how increasing effort affects choice behaviour. Linear 
models imply constant discounting as effort increases; hyperbolic (convex) models predict that changes at lower 
levels of effort will have greater impact than changes at higher levels; and parabolic (concave) models predict the 
opposite. These three functions capture the main patterns of effort discounting, with the hyperbolic and parabolic 
specifically motivated by our recent study which found them to describe cognitive and physical effort discount-
ing, respectively8. Note that each of these functions contained the identical number of free parameters, allowing 
subsequent model comparisons to be interpreted unambiguously.

For each group, we fitted these functions to choices in each of the two domains (i.e., 32 = 9 models each for the 
athlete and non-athlete groups). Within each group, we then compared these nine different models to examine 
whether cognitive and physical effort costs have a differential effect on reward devaluation. Models were fit using 
a softmax function and maximum likelihood estimation, with the softmax function being defined as:

=
+

β

β β

⋅

⋅i e
e e

Pr( )
(4)

SV
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where Pr(i) represents the probability of choosing option i, SVi is the subjective value of i, and β is the inverse 
temperature defining choice stochasticity. For each model, the effort discounting parameter (k) and the inverse 
temperature of the softmax function (β) were modelled separately for each domain8.

We compared model fits for each group with an Akaike Information Criterion (AIC) and a Bayesian 
Information Criterion (BIC) (see Supplementary Figs 2–5 for individual model fits)8. Overall, this analysis 
showed different patterns of effort discounting in athletes and non-athletes (Fig. 4). In particular, the best fitting 
model for non-athletes showed that cognitive effort discounting followed a hyperbolic pattern, and physical effort 
discounting a parabolic pattern (Fig. 4A,D). Note that this is identical to the winning model in the original paper 
that described this task on an unselected population8. Interestingly, however, this model comparison revealed a 
different pattern of effort discounting in athletes. Specifically, a parabolic function best fit the pattern of effort 
discounting, not only in the physical domain (as in non-athletes), but also in the cognitive domain (Fig. 4B,E).

To quantify the likelihood that these separate models for athletes and non-athletes best accounted for choice 
behaviour across the entire group, we computed the Akaike weights for each of the 92 = 81 models across the 
entire model space (Fig. 4C). Akaike weights represent the relative likelihood of a model relative to other models 
in the space, and is given by:
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where wi(AIC) = the Akaike weight of model i; Δi(AIC) = the difference in AIC between model i and the best fit-
ting model; and M = the number of models in the space. This analysis revealed that the relative likelihood that this 
combination of model fits best explained motivation across the group was 0.9997. The analogous computation for 
BICs was undertaken with Schwarz weights, which yielded the equivalent result (Fig. 4F).

To confirm that the group differences in k value for physical effort reflected the behavioural finding of greater 
willingness to invest effort in athletes vs non-athletes, we conducted a two-sample t-test between the two groups. 
This showed significantly greater k-values (and therefore lower physical motivation) for non-athletes relative 
to athletes (non-athletes, 7.68 ± 1.21, vs athletes, 4.77 ± 0.73; t(38) = 2.1, p = 0.046; Supplementary Fig. 6). This 
confirms the basic behavioural finding that showed a greater willingness to exert physical effort in rowers vs 
non-rowers. Note that no direct comparison can be made of the cognitive effort discounting parameters between 
groups because of the different functions involved. For completion, we also compared the inverse temperatures 
(β) between groups for each domain, but this did not yield any significant group differences (cognitive task: 
non-athletes, 17.7 ± 6.53, vs athletes, 8.19 ± 4.18; t(38) = 1.17; physical task: non-athletes 1.20 ± 0.15, vs athletes, 
12.1 ± 5.71, t(38) = 1.91).

Overall, these analyses lead to two conclusions. First, rowers and non-rowers follow similar discounting pat-
terns for physical effort, but the former are more motivated to invest effort than the latter. Second, there is a 
fundamental difference in the way in which cognitive effort is discounted between the two group (concave for 
athletes and convex for non-athletes). This suggests a complex relationship between cognitive and physical moti-
vation, such that greater physical motivation is not merely associated with an increase in cognitive motivation, but 
a fundamental difference in the pattern of effort discounting in the cognitive domain.

Subjective Perception of Mental and Physical Demand.  Was the difference in cognitive effort discounting between 
the two groups accompanied by differences in perceived cognitive demand? At the conclusion of the experiment, 
we administered the NASA Task Load Index to ascertain participants’ perception of subjective task demands. 
Specifically, we asked them to provide ratings of the perceived ‘mental demand’ and ‘physical demand’ of each of 
the six effort levels, in each of the two effort tasks, on a 21-point scale (Supplementary Data). For each task, we 
subtracted scores on the Physical from the Mental Demand subscales, in order to derive a single metric indicating 
the relative mental vs physical demand of each effort level (positive = more mentally-demanding) (Fig. 5). As 
expected, these data showed that our manipulations of cognitive and physical effort resulted in increases in per-
ceived demand within the corresponding domain, and decreases in demand in the alternate domain.
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To determine whether the perceived demand curves differ between groups, we fit non-linear regression 
models to participants’ effort ratings using linear, parabolic and hyperbolic functions (Supplementary Data). 
Interestingly, this analysis resulted in similar conclusions to the computational analyses on effort discounting. 
Specifically, in athletes, parabolic functions described the increases in both the relative mental demand for the 
cognitive task, and relative physical demand for the physical task (Fig. 5B). Importantly, however, the data from 
non-athletes showed a parabolic increase in the relative physical demand of the physical task, but a different func-
tion (in this case, linear) described increases in relative mental demand in the cognitive task (Fig. 5A). Together, 
this pattern of results recapitulates the computational findings, and provides independent evidence to support a 
difference in effort-based decision-making between athletes and non-athletes.

Discussion
To our knowledge, this is the first study to examine effort discounting in elite athletes. Although an extensive 
literature in sport psychology has emphasised the importance of motivational factors in the athletic pursuit of 
reward40–42, little is known about the mechanisms that underlie the greater motivation of athletes relative to 
non-athletes, either within or across separate domains of effort. Here, our computational models of motivated 
behaviour revealed three key findings. First, as predicted, athletes were more physically motivated than their 
non-athletic counterparts. Second, this increase in physical motivation was accompanied by a fundamentally dif-
ferent pattern of cognitive motivation between the two groups. Finally, the altered pattern of cognitive motivation 
in athletes relative to non-athletes was accompanied by corresponding changes in the perceived demands of the 
cognitive task. Together, these results show that a higher degree of motivation in one domain (physical) can be 
associated with altered motivation in a separate domain (cognitive).

The results of the physical effort task are consistent with previous reports. Several studies have shown that 
physical effort discounting is well-described by parabolic functions, although these earlier studies did not sys-
tematically examine the effect of individuals’ baseline levels of motivation8,15,43,44. Here, we found that physical 

Figure 4.  Model comparisons with an AIC (A–C) and BIC (D–F). Data are plotted separately for non-athletes 
(A,D) and athletes (B,E). We compared models that assumed: a hyperbolic (H) linear (L) or parabolic (P) effort 
discounting function for the cognitive and physical tasks. Results are ordered according to increasing AIC or 
BIC, with lower values indicating better model fits. The winning model for non-athletes described cognitive 
effort discounting as a hyperbolic function and physical effort discounting as a parabolic function. In contrast, 
the winning model for athletes described both cognitive and physical effort discounting as parabolic functions. 
(C) This combination of results (hyperbolic/parabolic fits for non-athletes; parabolic/parabolic fits for athletes) 
had Akaike and Schwarz weights in excess of 0.99, indicating high likelihoods of it being the best fitting model.
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effort discounting in both athletes and non-athletes was described by the same concave function, which differed 
only in its slope. One obvious reason for the shallower effort discounting in athletes is that they simply found 
the physical effort task to be less demanding than non-athletes. Indeed, there was some suggestion of this in the 
training data, which showed that, at the highest level of effort, athletes were able to maintain their force within the 
required window for longer than non-athletes. Interestingly, however, the subjective physical demand ratings for 
the physical effort task did not significantly differ between groups (Fig. 5 and Supplementary Fig. 7). This finding 
that athletes are more willing to invest physical effort than non-athletes, despite similar levels of perceived physi-
cal demand, is consistent with several motivational theories of sporting performance, which suggest that athletic 
success is characterised by high degrees of intrinsic motivation45, greater perceived competence46, and/or higher 
self-efficacy47,48.

In contrast, cognitive effort discounting was distinctly different between groups. In non-athletes, the hyper-
bolic effort discounting function replicated previously published findings using the identical task in a sample of 
unselected participants8. The convexity of this function suggests an intolerance in controls of even low levels of 
cognitive load, with steeper reward devaluation occurring at the lower levels of cognitive effort. However, the 
opposite was true of athletes. Their concave discounting pattern implied that they were more tolerant of low levels 
of cognitive load, with rewards mainly being devalued at higher levels of effort16 – a pattern that mirrored the 
parabolic increase in their perception of relative mental demand (Fig. 5B, blue line). It is worth noting that this 
greater tolerance of low effort by athletes generalised across both domains, even extending to a (cognitive) task in 
which they had not been specifically trained. This builds on applied research in sport psychology, which typically 
focuses on the capacity of athletes to exert effort in a form more closely related to their particular field (e.g., exam-
ining physical capacity in cyclists with a cycling task)24. From a neuroeconomic perspective, our results suggest 
that the way in which cognitive effort costs are integrated in making a decision may be quite unlike other forms 
of economic discounting, which are more consistently described by a single function (e.g., hyperbolic functions 
for delay discounting36,37). Instead, changes in cognitive motivation may be manifest as, not merely changes in the 
effort discounting gradient, but also in the shape of the function itself.

It is important to note that differences in effort discounting between the two groups cannot be due to con-
founding factors such as temporal or probability discounting. First, the temporal parameters of the cognitive 
and physical effort tasks were identical16,49,50. In addition, group differences are unlikely to have been driven by a 
differential ability in being successfully rewarded. We note that there were possible small group differences in per-
formance in the training phase. For example, during physical effort training, athletes were able to maintain their 
force for slightly longer than non-athletes, but only at the highest effort level; and there was also a trend towards 
higher d’s in athletes vs non-athletes in the cognitive task (p = 0.09). Importantly, however, the probability of each 
group being successfully rewarded at each effort level (i.e., the reinforcement rates) was at ceiling, and similar 
across all levels of effort for both groups (notwithstanding a trend towards a Group x Physical Effort interaction, 
p = 0.08). A further critical point to note is that logistic regressions showed that neither reinforcement rates 
nor behavioural performance significantly influenced choice behaviour. Overall, therefore, our results isolate 
the effect of subjective value on motivation from many effects that can confound studies examining effort-based 
decisions.

Together, these results provide a mechanistic basis for recently postulated psychobiological models of sport-
ing performance25–27. These models are based on motivational intensity theory51, with a core feature being that 
sporting performance is based on the willingness of an athlete to exert effort to achieve a reward. By modelling 

Figure 5.  The subjective perceived demand of the cognitive and physical effort tasks increased in the 
corresponding domain for both the (A) Non-athletes, and (B) Athletes. The ordinate is a difference score 
calculated as Mental > Physical demand for each level of effort on the NASA Task Load Index. Positive values 
therefore indicate greater perceived mental relative to physical demand. All demand curves were best fit by 
parabolic functions, except for the relative mental demand of the cognitive task by non-athletes, which was best 
fit by a linear function. This pattern of results recapitulates the findings for subjective value.
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participants’ decisions as a function of subjective value, our approach provides a computational account of how 
such effort-based decisions might be instantiated. Complementing these data are the results of a recent fMRI 
study, which used the identical paradigm in a group of unselected adults8. This fMRI study suggests that the 
effort-based decisions made in the present study are likely subserved by a network of domain-general areas 
(including the dorsomedial prefrontal cortex and dorsal anterior cingulate cortex), as well an area that uniquely 
encoded cognitive effort-based choices (the amygdala).

An outstanding question is how each of these nodes are selectively influenced by targeted training in one 
domain over another. An obvious interpretation for our data is that physical training not only augmented physical 
motivation in athletes, but also carried over to influence other domains of effort. An alternative, non-mutually 
exclusive, explanation is that, relative to those who choose not to pursue an athletic career, those who become elite 
athletes are inherently more driven. Future interventional studies could adjudicate whether the greater motiva-
tion in athletes relative to non-athletes seen here is cause or consequence of their intensive physical training, by 
prospectively applying paradigms such as ours following targeted interventions in the cognitive and/or physical 
domains.

In summary, this study reveals a complex relationship between cognitive and physical motivation, in which 
higher motivation in one domain may be associated with altered patterns of motivation in the alternate domain. 
More broadly, these results have clinical implications for conceptualisations of disorders of motivation, such as 
apathy, in patient populations52,53. Currently, apathy is considered to consist of different subtypes (e.g., behav-
ioural, cognitive and emotional)54–58. A question that remains for future studies is to examine how interventions 
aimed at improving motivation in one domain may affect motivation in the other – a possibility which could have 
important implications for rehabilitative programs involving cognitive and physical training in patients, as well 
as the elderly.

Methods
Cognitive Effort Task.  The cognitive effort task was based on a previously described RSVP paradigm35, and 
implemented in Presentation (www.neurobs.com). Participants had to fixate on a central RSVP stream while 
simultaneously monitoring two other RSVP streams to the left and right of fixation for a target ‘7.’ The target 
streams were each surrounded by three task-irrelevant distractor streams. Trials began with a blue pie-chart, 
which cued the level of effort associated with that trial. The initial target stream was designated by a left or right 
arrowhead at fixation. While monitoring that target stream, participants had to simultaneously monitor the cen-
tral stream for a ‘3’, which was the cue to switch their attention to the opposite target stream. We operationalised 
cognitive effort as the number of times that participants had to reallocate their attention on each trial, which 
could vary from one to six times5,8.

Participants performed 18 practice trials (three at each of the six levels of effort), followed by 60 trials in the 
training phase of the experiment (10 at each effort level). Each trial comprised 40 serially presented letter stim-
uli, each of which lasted 350 ms, for a total trial duration of 14 seconds. The central switch cue (‘3’) occurred at 
pseudo-random intervals. There were three targets per trial, and participants indicated their response by button 
press. Participants were required to detect at least one of the three targets, and commit fewer than two false 
alarms, to be rewarded one credit. Feedback was given at the end of each trial, and participants were informed 
that these credits would be used to determine their remuneration.

Note that the advantages of this paradigm are: (1) it is strongly motivated by a large literature establishing the 
relationship between attentional load and cognitive effort35,59, and is well-established in studies of attentional 
load35; (2) it allowed us to parametrically vary effort over multiple levels; and (3) its efficacy in eliciting cognitive 
effort discounting has been established in recently published studies5,8.

Physical Effort Task.  In the physical effort task, participants squeezed a hand-held dynamometer at one 
of six different levels of force with their dominant (right) hand. The dynamometers (SS25LA, BIOPAC systems, 
USA) were interfaced with a computer running Psychtoolbox (http://psychtoolbox.org) as implemented in 
Matlab (Mathworks, USA). Prior to the task, each participant’s maximum voluntary contraction (MVC) was 
determined as the maximum contraction reached over three trials.

The task required participants to maintain a constant grip force at one of six levels of effort, which were stand-
ardised across participants as percentages of their MVC (8%, 13%, 18%, 23%, 28%, 33%). Trials began with a red 
pie-chart indicating the force required on that trial. A vertical bar then appeared on the screen, with a yellow 
horizontal line indicating the target force level. During the trial, participants received visual feedback on their 
exerted force. For participants to be rewarded, they were required to maintain their force within 2.5% of the target 
force for ≥50% of the 14-second trial duration. Note that the trial durations in both the cognitive and physical 
effort tasks were identical.

As in the cognitive effort task, subjects first undertook 18 practice trials (three per effort level). They then com-
pleted the training phase, which comprised 60 trials (10 trials at each effort level). Each successfully completed 
trial earned participants one credit, and participants were provided with feedback at the end of each trial. The 
order of cognitive and physical training blocks was counterbalanced across participants.

Choice Period.  After the training phase, participants entered the critical decision-making period. On each 
trial, participants were provided with two options, and asked to choose whichever was preferable to them. One 
option was a ‘baseline’ low-effort/low-reward option (Effort Level 1 for 1 credit). This fixed baseline was always 
contrasted against a high-effort/high-reward ‘offer’, which comprised a higher level of effort (Effort Levels 2–6) for 
a higher reward (2, 4, 6, 8, 10 credits). The baseline and offer were always within the same domain. Participants 
were told that ten choices from each domain would be randomly sampled for them to perform at the conclusion 

http://www.neurobs.com
http://psychtoolbox.org
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of the experiment, and that this would determine their remuneration. All participants were paid £30, but a 
debriefing following the study showed that participants all believed that their payment depended on their choices.

The order of cognitive and physical effort choices was randomised. The entire effort-reward space was sam-
pled randomly and evenly, with all points in that space sampled three times per domain. Trials were self-paced, 
and each offer remained on the screen until participants registered their responses. The ‘baseline’ option was 
positioned on the left side of the screen, and the ‘offer’ on the right. Participants registered their response with a 
left or right button press, upon which their selected response would be highlighted on the screen for one second.

Data availability.  The datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.
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