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Contemporary theoretical accounts of metacognition propose that action-related information is used in the
computation of perceptual decision confidence. We investigated whether the amount of expended physical effort,
or the ‘motoric sunk cost’ of a decision, influences perceptual decision confidence judgements in humans. In
particular, we examined whether people feel more confident in decisions which required more effort to report.
Forty-two participants performed a luminance discrimination task that involved identifying which of two
flickering grayscale squares was brightest. Participants reported their choice by squeezing hand-held dyna-
mometers. Across trials, the effort required to report a decision was varied across three levels (low, medium,
high). Critically, participants were only aware of the required effort level on each trial once they had initiated
their motor response, meaning that the varying effort requirements could not influence their initial decisions.
Following each decision, participants rated their confidence in their choice. We found that participants were
more confident in decisions that required greater effort to report. This suggests that humans are sensitive to
motoric sunk costs and supports contemporary models of metacognition in which actions inform the computation

Metacognition
Sunk costs

of decision confidence.

1. Introduction

Every decision we make is associated with a degree of confidence
(reflecting the subjective likelihood that a decision was correct or
appropriate). Neural activity patterns in humans, monkeys, and rats
correlate closely with confidence estimates derived from formal models,
suggesting that metacognitive monitoring of decision behaviour occurs
in these species (Bang & Fleming, 2018; Kepecs, Uchida, Zariwala, &
Mainen, 2008; Middlebrooks & Sommer, 2011). Moreover, confidence
estimates are also associated with patterns of learning and decision-
making, suggesting that metacognitive information is used to guide
behaviour (Folke, Jacobsen, Fleming, & De Martino, 2017; Kepecs et al.,
2008; Middlebrooks & Sommer, 2011; Van Den Berg, Zylberberg, Kiani,
Shadlen, & Wolpert, 2016). For example, rats abandon potential re-
wards when decisions are less certain (Kepecs et al., 2008), monkeys

wager bets in a manner consistent with the use of metacognitive infor-
mation to maximise rewards across time (Middlebrooks & Sommer,
2011), and humans take more care (i.e. gather more evidence) in making
the second of two linked decisions when they are more confident in their
first decision (Van Den Berg et al., 2016). Given the importance of
confidence for guiding future behaviour, it is important to understand
the factors that feed into decision confidence estimates.

One factor is the action associated with reporting the outcome of a
decision. Intuitively, if the act of reporting a choice (e.g., pressing a
burtton or moving a lever) is irrelevant to the decision itself, it should not
affect decision confidence. However, an emerging view within the
metacognition literature is that various sources of sensory- and action-
related information are integrated when estimating decision confi-
dence. According to a recent model by Fleming and Daw (Fleming &
Daw, 2017), it may be beneficial for an organism to integrate action-
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related information when sensory evidence is limited, or feedback is
absent.

Consistent with this view, a number of studies have provided evi-
dence that action-related information can indeed affect perceptual
confidence judgements (Faivre et al., 2020; Faivre, Filevich, Solovey,
Kiihn, & Blanke, 2018; Fleming et al., 2015; Palser, Fotopoulou, & Kil-
ner, 2018; Pereira et al., 2020; Siedlecka et al., 2019; Siedlecka et al.,
2019; Siedlecka, Paulewicz, & Koculak, 2020; Wokke, Achoui, &
Cleeremans, 2020). For example, Fleming et al. (2015) applied single-
pulse TMS to the dorsal premotor cortex before and after responses
during a visual discrimination task. They found increased confidence
when participants made a correct response that was congruent with the
stimulation and decreased confidence when participants made a correct
response incongruent with the stimulation. It has also been shown that
metacognitive judgements in both perceptual and memory tasks tend to
be more accurate (i.e. more closely correspond to the objective accuracy
of a decision) when they follow a behavioural response (Pereira et al.,
2020; Siedlecka, Skora, et al., 2019). In addition, perceptual awareness
ratings (Siedlecka, Hobot, et al., 2019) and perceptual confidence rat-
ings (Siedlecka, Paulewicz, & Koculak, 2020) have been shown to be
higher following task-compatible cued motor responses, compared to
task-neutral cued responses. Taken together, these studies broadly
demonstrate that action-related information can affect perceptual con-
fidence judgements.

Critically however, one question which previous studies did not
address is whether fine-grained action information, such as the degree of
physical effort expended to report a decision (i.e. the ‘motor cost’ of a
decision), affects subsequent reports of decision confidence. Recently, it
was shown that the presence of subthreshold muscle activation pre-
ceding a response, as well as the force with which the response (a key-
press) was made, correlated positively with subsequent judgements of
decision confidence (Gajdos, Fleming, Saez Garcia, Weindel, & Dav-
ranche, 2019). However, as muscle activation and response force were
not experimentally manipulated, it is unclear whether higher confidence
judgements simply co-occurred with greater muscle activation in the
same trials. As such, it remains unclear whether the motor cost of a
decision affects decision confidence.

Emerging evidence suggests that motor costs can also affect the way
in which perceptual decisions are made. In an experiment by Hagura,
Haggard, and Diedrichsen (2017) participants moved one of two
manipulanda to indicate their choice in a random dot motion task.
Unbeknownst to the participants, physical resistance (i.e. motor costs)
gradually increased for one manipulandum over the course of the
experiment. Despite being unaware of this asymmetry, participants were
biased against making responses that required more effort, and this bias
carried over to a subsequent verbal-response task using the same stimuli.
This suggest that motor costs can affect perceptual decision-making
processes that are not strictly related to action selection. However, in
this study the motor costs could be anticipated, and confidence ratings
were not recorded. Consequently, it could not be determined whether
expended motor costs (as opposed to anticipated motor costs) affected
decision confidence.

The amount of effort one invests into reporting a decision can be
thought of as a ‘sunk cost’. Sunk cost errors are said to occur when in-
dividuals continue pursuing an action due to prior, and therefore irre-
trievable, investments (Arkes & Blumer, 1985). Recently, Sweis et al.
(2018) showed that humans, rats, and mice are susceptible to a temporal
sunk cost bias. In their experiment, subjects were offered to wait a short
duration to obtain a reward in each trial. Critically, after accepting an
offer, subjects were free to abandon the decision to wait at any point
during the waiting period. Sweis et al. (2018) showed that the likelihood
of continuing and obtaining the reward, rather than abandoning the
decision, increased when more time had already been invested. Given
this finding, we hypothesised that the degree of effort one invests into
reporting a choice may similarly act as ‘motoric sunk cost’, which will
increase decision confidence.

Cognition 207 (2021) 104525
1.1. The current study

To investigate the relationship between expended motor costs and
decision confidence, we employed a dynamic luminance discrimination
task in which participants indicated which of two flickering grey squares
was brightest. Participants reported their decision by squeezing one of
two hand-held dynamometers. Critically, the effort required to report a
choice (i.e. how hard participants needed to squeeze) was varied across
three levels (low, medium, high). It was important to directly manipu-
late effort in this manner, since simply looking for associations between
effort and confidence would not allow us to infer the directionality of
any observed effect (i.e. positive associations could equally be driven by
participants investing more effort into decisions they are highly confi-
dent are correct). The effort condition was also revealed only after
participants had initiated their squeeze response, making it impossible
for this information to influence the actual decisions they made. Each
decision was followed by a confidence report (indicating how confident
participants were in having responded correctly) ranging from 0%
(certainly wrong) to 100% (certainly correct). Drawing from sunk cost
theory and contemporary models of metacognition, we hypothesised
that participants would be more confident in having responded correctly
for decisions which they had invested greater effort into reporting.

2. Materials and methods
2.1. Participants

Fifty participants aged between 18 and 42 years (M = 23.9, SD =
4.23) were recruited via advertisements on campus and online. This
sample size was chosen prior to collecting any data. We chose to
approximately double the sample size used in previous studies which
investigated associations between action and confidence (Fleming et al.,
2015; Gajdos et al., 2019; Siedlecka, Hobot, et al., 2019) to ensure
sufficient statistical power. Participants gave written informed consent
prior to participation and were reimbursed $20 for their time. The
experiment advertised reimbursement of $15 with the opportunity to
earn an extra $5 to incentivise task performance, however all partici-
pants were ultimately paid the full amount. Participants were fluent in
English, had normal or corrected-to-normal vision, and no history of
neurological or psychiatric conditions. The study was approved by the
Human Ethics Committee at the Melbourne School of Psychological
Sciences, ID 1749955.3.

Five participants were excluded as the staircasing procedure (see
below) did not produce sensible accuracy values for easy and hard dif-
ficulty conditions (i.e. the easy condition trials ended up being more
difficult than hard condition trials). Two participants were excluded due
to better performance on hard, rather than easy trials. One participant
was excluded due to the lack of variability in their choices, as one
response option was chosen in 85.13% (395/464) of completed trials,
suggesting disengagement with the task. The final sample consisted of N
= 42 participants aged between 19 and 42 years old (M = 23.98, SD =
4.30).

2.2. Materials

Stimuli consisted of two flickering grayscale squares (70 x 70 pixels,
~2.18 x 2.18 degrees of visual angle) presented side-by-side, equidis-
tant from the centre and spaced 70 pixels apart horizontally. Individual
frame RGB values were randomly sampled from Gaussian distributions
centred around mean values that differed depending on the stimulus
difficulty condition. There were two stimulus difficulty conditions (easy
and hard). Mean RGB values for these two conditions were obtained
from staircasing procedures (see below), meaning that the mean RGB
values differed across participants. The difference in mean RGB values
between the brighter and darker squares ranged from 11 to 34 (M =
20.98) in the easy stimulus condition, and 4-21 (M = 12.36) in the hard



W. Turner et al

stimulus condition. The distributions of individual frame RGB values
had standard deviations of 25.5 and were truncated to two standard
deviations from the mean.

Stimuli were presented on a Sony Trinitron G420 CRT monitor
(Resolution 1280 x 1024, Refresh Rate 75 Hz) that was gamma-
corrected using a ColorCAL MKII Colorimeter. The paradigm was pro-
grammed in MATLAB 2015b using Psychophysics Toolbox Version
3.0.14 (Brainard, 1997; Kleiner et al., 2007). Participants used a pair of
Biopac TSD121C Hand Dynamometers (one gripped in each hand) and a
standard computer mouse and keyboard throughout the experiment.
Participants were seated ~50 cm from the screen and performed the
experiment in a darkened room. The dynamometers were affixed to a
custom-made frame at a comfortable distance such that participants
could grip them while resting their forearms on the table.

2.3. Procedure

2.3.1. Calibration phase

The hand dynamometers were calibrated to control for individual
differences in hand strength. To calibrate the dynamometers, partici-
pants were instructed to squeeze the handles with as much force as
possible. This was done to measure the force of their maximum volun-
tary contraction (MVC). A proportion of participants’ MVC determined
the amount of force participants needed to exert to submit a response in
the three effort conditions (low = 20%, medium = 40%, high = 60%).
Participants calibrated the dynamometers twice throughout the exper-
iment—once prior to the experiment, and a second time mid-way
through the experiment (between the fifth and sixth block) to control
for fatigue.

Following the initial dynamometer calibration and prior to the main
experiment, participants performed two short sessions in which inter-
leaved staircase procedures were used to control for inter-individual
variation in task aptitude. This included a three-down-one-up and a
two-down-one-up staircase consisting of 200 trials of the luminance
discrimination task. Participants responded using the left and right
arrow keys of a keyboard and were provided visual feedback on the
monitor (“correct” or “error”). Participants were not required to use
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dynamometers or report their decision confidence during the staircase
procedure. The staircase procedure calibrated the mean brightness
levels (i.e. stimulus difficulty) and achieved an average performance
accuracy of 86.77% in the easy difficulty condition 75.75% in the hard
difficulty condition.

2.3.2. Experiment phase

The main experiment consisted of 480 trials. The trial structure is
depicted in Fig. 1. Participants completed ten blocks of 48 trials each
with self-paced breaks in between. In each trial, a fixation point was
presented for 500 ms, after which the stimuli appeared for 400 ms.
Participants were asked to identify which of the two squares (left or
right) was brighter overall. Participants were able to respond from 150
ms after stimulus onset. Following stimulus presentation (or upon
squeezing a dynamometer, if participants responded before stimulus
offset), two empty response columns and a red horizontal line (repre-
senting the amount of force required to submirt a response) appeared on
the screen. Importantly, the red horizontal line representing the
required response force appeared only after participants indicated their
choice by squeezing one of the dynamometers. This means that partic-
ipants did not know how much effort would be required on a trial before
they began responding. As participants continued to squeeze, a dynamic
vellow bar filled the column according to the amount of force exerted.
Participants were instructed to continue squeezing until the column was
‘filled’ to the red line (i.e. the response threshold) whereby a response
would be submitted. Hence, the position of the red threshold determined
the amount of force needed to submit a response, and this varied across
three effort conditions (low, medium, and high). The three effort con-
ditions were randomised within blocks. Participants were also prevented
from changing their decision during this stage, as once one dynamom-
eter was squeezed, the alternate dynamometer could not register a
response. Participants were given 2000 ms to respond. If participants
were unable to respond in time, the feedback “Too Slow” appeared, and
participants proceeded to the next trial (this occurred on ~3% of trials).
Following response submission and a brief delay, participants were
given 3600 ms to report their confidence. Participants controlled a
mouse with their right hand and clicked anywhere along a horizontal

How confident are you that your choice was correct?
60

Certainly Probably ~Maybe  Maybe Probably Certainly
wiong  wrong  wrong  corect  comect  correct

3600 ms

P

Fig. 1. Task schematic. A fixation point was presented for 500 ms. The stimuli were then presented for 400 ms. Once the participant squeezed one dynamometer, a
red horizontal line appeared to indicate the amount of effort participants needed to exert to submit a response. As participants continued the squeeze, a dynamic
yellow bar filled the column up to the red line, whereby a response was submitted. Participants were given 2000 ms from stimulus onset to submit a decision. Then, a
confidence scale appeared for 3600 ms and participants needed to make a confidence judgment within that time. For their subsequent confidence repoxrts, partic-
ipants were able to click anywhere along the scale, excluding the absolute centre. The cursor controlled a dynamic red vertical line that provided visual feedback of
the cursor’s position along the scale. The red vertical line initially appeared at a random position along the scale on every trial. (For interpretation of the references to
colour in this figure legend, the reader is refeired to the web version of this article.)
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confidence scale ranging from 0% (certainly wrong) to 100% (certainly
correct). The exact mid-point of the scale could not be selected to pre-
vent participants from reporting a purely guessing response. If partici-
pants did not respond in time, the words “Too Slow” appeared and they
proceeded to the next trial.

On half of the trials, the confidence scale appeared one second after
response submission (timing 1 condition), and in the remaining half, the
confidence scale appeared 2.3 s after onset of the squares (timing 2
condition). These two timing conditions were used because the higher
effort responses took longer to enact. As such, if the delay between
response submission (i.e. the threshold being reached) and confidence
scale onset were kept consistent across all trials, this would mean that
there was a longer lag between stimulus onset and confidence report for
higher, relative to lower effort trials. However, if the delay between
stimulus onset and confidence scale onset were kept consistent across all
trials, higher effort responses would leave a shorter gap between
response submission and confidence report. Due to these conflicting
confounds, both timing conditions were implemented, randomised
across blocks, and explicitly modelled in the analyses.

2.3.3. Confidence ratings

Following Fleming, Van Der Putten, and Daw (2018), the confidence
scale (Fig. 1) incorporated vertical lines and labels to mark 20%
(“Probably wrong”), 40% (“Maybe wrong™), 60% (“Maybe correct”),
and 80% (“Probably correct”) confidence. Furthermore, participants
were told that an additional reward of up to $5 could be earned based on
task performance and the accuracy of their confidence ratings as
calculated via a quadratic scoring rule (points = 100%[1 — (correct; —
Conﬁdencei)]Q). This was done to incentivise accurate responses and
honest confidence ratings. Prior to the experiment, participants were
familiarised with the confidence scale and scoring rule.

Note that we use the term ‘confidence’ to refer to confidence in
having responded correctly, which is distinct from ‘certainty” in the
outcome of the response (i.e. the absolute distance from the centre of the
confidence scale).

2.3.4. Procedure

Participants completed the initial calibration of the hand dyna-
mometers with the experimenter present and then completed the stair-
case procedure and main experiment alone. Once participants
completed the experiment, they were debriefed and received the mon-
etary compensation.

2.4. Statistical analysis

Data and analysis code will be made publicly available at https://osf.
io/cg74z/ at the time of publication. Analyses were conducted using
linear and generalised linear mixed-effects models. These were per-
formed in R (version 3.5) with the lme4 package (version 1.1; Bates,
Michler, Bolker, & Walker, 2015) and the glmmTMB package (version
1.0.1; Brooks et al., 2017). Continuous variables were centred and
scaled, and missed responses were excluded.

2.4.1. Control analyses

Initial control analyses were conducted to ensure that the stimulus
difficulty manipulation produced effects in the expected direction, and
to examine whether the accuracy and timing of decisions differed across
the three effort conditions. Although these effects were accounted for in
the models and can technically be inferred from the mixed-effects model
parameters, these analyses were reported for completeness.

To ensure that individuals were more accurate in easy as compared
to hard trials, a likelihood ratio test was conducted between a general-
ised linear mixed model (GLMM) predicting accuracy from stimulus
difficulty, and an intercept only null model. To ensure that participants
responded faster on easy as compared to hard trials, a likelihood ratio
test was conducted between a GLMM (Gamma family) with an identity
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link function (as recommended by Lo & Andrews, 2015), predicting
response time from stimulus difficulty, and an intercept only null model.
Furthermore, to ensure participants responded faster on correct as
compared to error trials, a likelihood ratio test was conducted between a
GLMM (Gamma family) with an identity link function predicting
response time from accuracy, and an intercept only null model. Finally,
likelihood ratio tests were also conducted to determine whether initial
decision accuracy and response times differed significantly across the
three effort conditions.

2.4.2. Mixed-effects models

To determine whether invested effort influenced confidence ratings,
a linear mixed-effects regression model was used to predict decision
confidence based on effort and a number of control variables. Mixed-
effects models were used as the data had a multi-level structure; ob-
servations (i.e. confidence ratings) were nested within participants. As
such, decision confidence and the predictors’ effects on decision confi-
dence would be more strongly correlated within participants than be-
tween participants (Fleming, Weil, Nagy, Dolan, & Rees, 2010). Mixed-
effects models can account for the inherent dependence in our data
due to individual-level differences, and better account for this variation.
Therefore, participant ID was additionally included as a random inter-
cept to allow average confidence ratings to differ for each participant. To
account for variability in the effects of effort, accuracy, and stimulus
difficulty across participants, random slopes were also included for these
three variables as well as the interaction between accuracy and stimulus
difficulty (see below for details on this interaction).

Initial response time (i.e. the time at which participants first began to
squeeze) was defined as the time at which squeeze force first exceeded
10% MVC in each trial, and was included as a covariate in the model.
Accuracy, stimulus difficulty, and timing condition (i.e. whether the
onset of the confidence scale was time-locked to either stimulus onset or
response offset) were also included as covariates in the model. These
control variables were included either because they are known to be
associated with decision confidence (response time, accuracy, stimulus
difficulty; see Pleskac & Busemeyer, 2010) or to control for the effect of
our manipulation of confidence scale onset (timing condition).

An interaction term between stimulus difficulty (i.e. evidence
strength) and accuracy was also included in all models, as the distri-
bution of confidence ratings reflected an established pattern in the
metacognition literature (plotted in Figure A.1 Appendix A) whereby
increased evidence strength leads to increased confidence in correct
responses, but to decreased confidence in error responses (i.e. the
folded X effect; Kepecs & Mainen, 2012). Interactions between effort
condition and accuracy, effort condition and timing condition, and effort
condition and stimulus difficulty were not included in the final model, as
likelihood ratio tests indicated that models including these interactions
did not fit the data significantly better than null models which did not
include the interaction of interest.

A likelihood ratio test was conducted to compare the fit of a full
model with effort as a predictor (model 1) to a null model which did not
include effort as a predictor (model 2). Regression model structures are
as follows:

(1) confidence — effort + accuracy * difficulty + timing + initialRT
+ (1 + effort + accuracy * difficulty|participant)

(2) confidence ~ accuracy * difficulty + timing + initialRT + (1 +
effort + accuracy * difficulty|participant)

A post-hoc Tukey test was conducted using the emmeans package in
R, to formally examine differences in confidence ratings between the
three effort levels.

2.4.3. Time to threshold force analysis
In addition to the main analysis, we conducted an exploratory
analysis examining the relationship between the time to threshold force
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(i.e. the time at which the force threshold was crossed relative to the
initial response time) and decision confidence. For this analysis a like-
lihood ratio test was conducted between a full model containing the
variable of interest (i.e. time to threshold force) and a null model (i.e.
model 2 above). Both of these models included an additional random
intercept for effort level. An additional exploratory analysis investi-
gating the relationship between maximum recorded force and decision
confidence is also reported in Appendix B.

3. Results
3.1. Control analyses

Control analyses were conducted to ensure that the stimulus diffi-
culty manipulation produced the expected effects on behaviour, and to
examine whether the accuracy and timing of decisions differed signifi-
cantly across the effort conditions. As expected, the proportion of correct
responses was higher on easy (M = 86.8%, SD = 0.06) compared to hard
trials (M = 75.7%, SD = 0.08; likelihood ratio test, ,yz(l) =403.82,p <
.001), and participants’ response times were faster on easy (M = 713 ms,
SD = 169 ms), compared to hard trials (M = 740 ms, SD = 182 ms;
likelihood ratio test, 12(2) = 73.29, p < .001). Participants also
responded faster when making correct responses (M = 715 ms, SD =
170 ms) compared to errors (M = 782 ms, SD = 207 ms; likelihood ratio
test, ,(2(1) = 225.98, p < .001). There was no evidence of a significant
difference in participants” accuracy rates between the three effort con-
ditions (Mg = 81.1%, Mpeq = 81%, Mpjgn = 81.8%; likelihood ratio
test, )(2(2) = 1.74, p = .419). There was evidence of a significant dif-
ference in response times (Meanjo, = 732 ms, Meanyeq = 731 ms,
Meanpigh = 717 ms; likelihood ratio test, ,1/2(2) = 19.68, p < .001). The
most likely reason for this is that, because the effort threshold took
longest to reach in the high effort condition, slow responses were more
likely to be missed — leading to a slight artificial increase in response
times. Given this, it was important to include response time as a co-
variate in the main analysis model (see below) to rule out that response
times were driving the observed effects. We also conducted an addi-
tional analysis (reported in Appendix C) where we sub-sampled the
dataset and matched response times and miss-rates across conditions to
confirm that condition-wise differences in response time were not the
cause of condition-wise differences in confidence.

3.2. Confidence ratings

To determine whether effort was a significant predictor of decision
confidence, a likelihood ratio test was used to compare a full model
including the main predictor of interest (i.e. effort condition) to a null
model which did not include this predictor. The logic of the test is that if
the model with effort is a better fit to the data, then effort is a significant
predictor of decision confidence. The full model fit the data significantly
better than the null model (likelihood ratio test, )(2(2) =10.47,p =
.005). In the full model (summarised in Table 1), high effort was a
predictor of increased confidence (p = .002), however medium effort

Table 1

Estimates from the full linear mixed-effects model.
Fixed effects Estimate CI P
(Intercept) 75.73 71.51-79.95 <0.001
Medium effort 0.17 —0.42-0.75 0.579
High effort 0.91 0.33-1.49 <0.002
Timing (stimulus-locked)* 0.52 0.07-0.97 0.025
Accuracy (correct) 13.79 9.74-17.84 <0.001
Difficulty (easy) —6.52 —8.45 to —4.59 <0.001
RT —0.02 —0.02 to —0.02 <0.001
Accuracy*Difficulty 9.47 6.99-11.96 <0.001

# Timing (Stimulus-locked) refers to the timing 2 condition whereby confi-
dence scale onset occurred 2.3 s following the onset of the squares.
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was not (p = .579). The distribution of confidence ratings (Fig. 2A) re-
flects these results, as high effort showed a larger positive effect on
confidence ratings compared to both medium and low effort. A post-hoc
Tukey test showed that confidence ratings were significantly higher in
high compared to low effort trials (p = .006) and high compared to
medium effort trials (p = .029), but did not significantly differ between
low and medium effort trials (p = .844).

As expected, confidence was increased for fast responses (p < .001
see Table 1). There was also a significant interaction between accuracy
and stimulus difficulty (i.e. evidence strength). This reflects the *folded-
X’ effect (Kepecs & Mainen, 2012), whereby increases in evidence
strength are associated with increased confidence in correct decisions
but decreased confidence in incorrect decisions. This has been widely
reported in previous studies and is a feature predicted by many models
of metacognition (e.g., Fleming & Daw, 2017).

Though linear mixed-effects methods are commonly used in the
confidence literature for multi-level data structures (Fleming et al.,
2018; Gajdos et al., 2019), it has been suggested that a generalised linear
model that assumes a beta distribution is more appropriate for model-
ling doubly bounded continuous data (Verkuilen & Smithson, 2012).
Our results were consistent when using generalised linear (beta) mixed-
effects model analyses (Appendix D).

3.3. Time to threshold analysis

Having determined that decision confidence was positively associ-
ated with the level of effort required to report a decision, we then
conducted an additional exploratory analysis examining whether there
was an association between decision confidence and the time it took to
reach the force threshold relative to the initial response time (‘time to
threshold force’). The full model fit the data significantly better than the
null model, indicating a significant negative effect of time to threshold
force on decision confidence (Fig. 3; likelihood ratio test: )(2(]) =
113.11, p < .001). Further analyses looking at the relationship between
maximum recorded force and decision confidence on each trial are re-
ported in Appendix B.

4, Discussion

We investigated whether the ‘motoric sunk cost’ of a decision (i.e.
the amount of effort one has invested into reporting a decision) affects
decision confidence (i.e. how confident one feels in having responded
correctly). In support of our hypothesis, we found that increases in the
amount of effort required to report a choice were associated with
increased confidence. This suggests that humans are sensitive to a
‘motoric sunk cost effect’, whereby decisions which one has invested
more effort into reporting are judged as more likely to be correct.
Additional, exploratory single-trial analyses revealed that decision
confidence was also negatively associated with the time it took to reach
the response force threshold, relative to the initial response time (‘time
to threshold force’). In other words, more vigorous responses were
associated with higher confidence. Taken together these findings sug-
gest that various sources of action-related information feed into judge-
ments of decision confidence, consistent with contemporary models of
metacognition (Fleming & Daw, 2017).

This study sits within a growing body of literature which shows as-
sociations between action-related information and metacognitive
judgements (Faivre et al., 2018, 2020; Fleming et al., 2015; Palser et al.,
2018; Pereira et al., 2020; Siedlecka, Paulewicz, & Koculak, 2020;
Siedlecka, Hobot, et al., 2019; Siedlecka, Skora, et al., 2019; Wokke
et al., 2020). By directly manipulating the amount of effort required to
report a decision we have shown that confidence depends, in part, on
fine-grained representations of one’s own actions. This supports Fleming
and Daw’s (Fleming & Daw, 2017) model of metacognitive judgements
and is consistent with the notion that multiple sources of sensory and
motoric information can be exploited to refine confidence estimates.
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Fig. 2. Mean confidence ratings across the three effort conditions. A) Participants’ mean confidence ratings across all trials for each effort level. Each coloured point
represents the mean confidence rating from an individual participant. B) Estimated mean confidence ratings from the mixed effects model across the three effort
levels. In all plots mean confidence ratings (black dots) are connected by black lines. Error bars indicate the standard error of the mean. For reference, a confidence
rating of O represents a confidence level of ‘Certainly Wrong’, whilst a rating of 100 represents a confidence level of ‘Certainly Correct’. The raincloud plots were
made using code from (Allen, Poggiali, Whitaker, Marshall, & Kievit, 2019). Note, the apparent bimodal distribution of the predicted confidence ratings from the
model in Fig. 2B (particularly for the low and medium effort conditions) is simply due to variability in the model predictions. If the seed of the random number
generator in R is changed, then this apparent bimodality disappears. For simplicity we have left the RNG seed equal to 1.
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Fig. 3. Associations between decision confidence and time to threshold force, within each effort condition. For illustrative purposes the black lines were fit using a

simple regression model which predicted confidence from time to threshold force.

Fleming and Daw (2017) hypothesised that actions can inform de-
cision confidence. However, they did not specify the exact effect that
variations in decision-related motor costs would have on confidence.
Our results help clarify this by showing that expended effort influences
decision confidence (i.e. it increases confidence in a decision being
correct). One interpretation of this finding is that expended effort is used
as a heuristic (i.e. a proxy for decision accuracy) that informs confidence

judgements. Investing more effort into a decision might be interpreted
post-hoc as a signal that the decision is likely to be correct. In a similar
vein, it has been shown that faster response times predict increased
confidence in a decision, as quick responses potentially indicate that a
decision is more likely to be correct (Kiani, Corthell, & Shadlen, 2014).
Indeed, this effect was also present in our data. Taken together, both the
effects of effort and response speed on subsequent confidence
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judgements reinforce the notion that various sources of action-
information can act as additional cues regarding decision accuracy,
particularly when sensory and decision-related information is limited or
ambiguous. Fast response times may act as a signal that a decision was
easily made (so likely to be correct), whilst effort invested into reporting
a decision may act as a ‘sunk cost” which also inflates decision
confidence.

Notably, a related body of literature has shown that change-of-mind
decisions—rapid decision reversals (Resulaj, Kiani, Wolpert, & Shadlen,
2009)—are sensitive to anticipated motor costs. In particular, it has
been shown that individuals are less likely to change their minds when it
is more effortful to do so (Burk, Ingram, Franklin, Shadlen, & Wolpert,
2014; Moher & Song, 2014). In these studies, participants moved their
hand towards a leftward or rightward target box to indicate their choices
during a random dot motion task (Burk et al., 2014; Moher & Song,
2014). On trials where the distance between the two targets was larger
and revising a decision mid-movement would incur a larger motoric and
temporal cost, the frequency of changes of mind was reduced. As con-
fidence has been used as a proxy for change-of-mind decisions (i.e. high
confidence is associated with a lower likelihood of changing one’s mind,
and vice versa; Fleming, 2016; Folke et al., 2017), this could suggest
that, when anticipating more costly changes of mind, confidence in an
initial choice was increased. Crucially, our experiment suggests that, in
addition to anticipated effort, expended effort can also increase confi-
dence. In essence, this serves as a demonstration of a ‘motoric sunk cost
effect’ in humans, similar to a novel temporal sunk cost effect which has
recently been reported (Sweis et al., 2018). While anticipated effort
might bias confidence already during the decision process, potentially to
restrict energy expenditure linked to costly changes of mind, expended
effort might be linked to a different mechanism and serve as post-hoc
evidence, in addition to the sensory information, which feeds into the
metacognition evaluation process. Critically, whilst such an effect acts
as a bias in the current experimental context, in more real world sce-
narios it may often be useful, and even rational (c.f. Fleming & Daw,
2017), for decision-makers to take this information into account when
making metacognitive judgements.

The observation that confidence ratings did not significantly differ
between the low and medium effort conditions raises the question of
whether expended effort has a graded effect on decision confidence. One
possible reason why confidence ratings did not significantly differ be-
tween the low and medium effort conditions is that participants may not
have experienced a substantially larger effort cost in the medium effort
condition compared to the low effort condition. Effort discounting
studies have shown that incremental increases in effort expenditure
have a greater impact on perceived costs when individuals are closer to
their maximum level of exertion (Chong et al., 2018; Hartmann, Hager,
Tobler, & Kaiser, 2013; Stevens & Mack, 1959). Given that confidence
was significantly increased on high compared to medium and low effort
trials, and that confidence on medium effort trials was quantitatively
higher than confidence on low effort trials, we conclude that expended
effort does affect decision confidence.

To better differentiate between effort conditions, future studies could
incorporate additional effort levels (e.g., six effort levels at 5% in-
crements) and utilise sustained contractions (see Chong et al., 2018 for
an example), rather than brief, ballistic contractions. This might allow
differences between effort increments—even at lower levels—to become
more salient, and tease out graded effects to determine whether the
pattern in the effort discounting literature (e.g., a parabolic/concave
relationship between actual and subjective effort costs) extends to the
effect of physical effort on confidence as well.

4.1. Limitations
Our results should be interpreted with the following limitations in

mind. Since participants were given a visual indication as to how much
effort they were exerting on each trial, it is not possible to determine
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whether the effect of expended effort was driven by proprioceptive
feedback, the visual cue, or a combination of both. It is possible that
simply believing that they had expended more effort after seeing a visual
cue was enough to affect participants’ decision confidence (either un-
consciously or as a form of demand characteristic). However, if this were
the case, it is unclear why there was no statistically significant difference
in confidence between the low and medium effort conditions, but there
was a statistically significant difference in confidence between the me-
dium and high conditions. Given that the position of the threshold line
increased by equal increments between the low and medium, and the
medium and high conditions, if participants were influenced by the vi-
sual cue, we would expect their confidence ratings to also change by the
same amount across effort levels. Instead, participants displayed a
greater increase in confidence between the medium and high effort
conditions, compared to the low and medium effort conditions, consis-
tent with a parabolic/concave relationship between actual and subjec-
tive effort costs (Chong et al., 2018; Hartmann et al., 2013; Stevens &
Mack, 1959).

Consistent with the overarching view that actions inform decision
confidence (Fleming & Daw, 2017), we also found that measures of
squeeze force trajectories (i.e. time to threshold force and maximum
recorded force) were related to decision confidence. This suggests that
even when the visual cue is controlled for, fine-grained response infor-
mation is still reliably associated with decision confidence. Critically
however, since unlike the effort condition manipulation, time to
threshold force and maximum force were not directly manipulated
within each effort condition, the implications of these associations are
ultimately unclear. It is possible that slightly more vigorous responses
led to greater confidence, or that more confident decisions led to slightly
more vigorous responding.

Whilst we cannot unequivocally conclude that the effect was driven
by proprioceptive feedback alone, this interpretation seems most plau-
sible. Whether this effect remains when motor costs are manipulated
without providing exogenous cues should be investigated in future
studies. However, such manipulations are not trivial. Simply removing
the visual cue, or replacing it with an auditory cue, will introduce
response uncertainty (i.e. uncertainty about how close one is to locking
in a response), which will lead to different response dynamics (i.e.
repeated bursts of squeezing to make up for missing the force threshold)
that, in turn, may themselves influence confidence judgements.

One final potential limitation of this study is that participants were
more likely to exceed the response time deadline in high effort trials, as
it took longer to reach the required squeeze force threshold. This gives
rise to a potential confound, as only relatively quick initial responses
would have been recorded (i.e. if participants were slow to start
squeezing, then their response would not be recorded). Since response
time is known to negatively correlate with confidence (Kiani, Corthell, &
Shadlen, 2014), a potential concern is that condition-wise differences in
response times may have given rise to the condition-wise differences in
confidence. However, in the mixed-effects models, when effects of
response time were controlled for, motoric effort nevertheless had a
significant effect. Moreover, the effect of effort on confidence still
remained after matching response times and miss-rates across condi-
tions (see Appendix C). Finally, response time was also controlled for in
the within-condition analyses, and time to threshold force and
maximum recorded force were nevertheless consistently associated with
decision confidence. Given this, we conclude that motor information can
influence decision confidence, independently of response times.

4.2. Summary

Here, we have shown that confidence in a perceptual decision de-
pends, in part, on the ‘motoric sunk cost’ incurred from reporting the
decision. In other words, we have shown that individuals tend to report
higher confidence in decisions for which they had invested greater effort
into reporting. This demonstration of a ‘motoric sunk cost effect’
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Appendix A. The folded-X interaction effect
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Fig. A.1. Distributions of confidence ratings for correct and error trials across the three effort levels for hard and easy difficulty conditions: The results show the
’folded-X’ interaction pattern of confidence judgements. That is, as compared to hard trials (low evidence strength), reported confidence in easy trials (high evidence
strength) tended to be higher for correct trials, but lower for error trials. This provided a rationale for including the accuracy*difficulty interaction in the model as a

control variable.

Appendix B. Maximum recorded force and decision confidence
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Fig. B.1. Associations between maximum recorded force and decision confidence, within each effort condition. For illustrative purposes the black lines were fit using
a simple regression model which predicted confidence from maximum recorded force.

We examined the relationship between the maximum recorded force on each trial and decision confidence. For this analysis, it is important to note
that the dynamometers were programmed to stop recording once the initial force threshold was crossed. However, the testing computer only received
a new sample (a 15 ms sample of data recorded at 1000 Hz) from the dynamometers every 15 ms. As a result, the maximum recorded force was
different on each trial, even though the threshold crossing ultimately triggered the dynamometers to stop recording. This allowed us to examine
whether maximum recorded force was meaningfully related to decision confidence. Nevertheless, given that this is an imperfect measure of the
maximum force applied to the dynamometers in each trial (i.e. it is very likely that on some trials participants continued to squeeze after the dy-
namometers stopped recording), we have chosen to report these results here, rather than in the main text.

For this analysis, a likelihood ratio test was conducted between a full model, containing maximum recorded force as a predictor, and a null model
which did not contain maximum recorded force but was otherwise identical (see R code at htips://osf.io/cg74z/ for full details). These analyses
revealed that decision confidence was positively associated with the maximum recorded force (Fig. B.1; likelihood ratio test: J{Z(l) =9.93,p =.002).

Appendix C. Matching response times and miss rates across the effort levels

Considering the percentage of missed trials (i.e. trials in which a response was not recorded), it is apparent that participants were slightly more
likely to miss responses on high effort trials (5.16% of trials) compared to the low (1.89%) and medium (1.93%) effort trials. As a result, response times
tended to be slightly faster on high effort trials compared to low and medium effort trials. This is because it took longer to reach the response threshold
on high effort trials, so slow responses were more likely to be missed. As can be seen in Fig. C1 (below) this leads to a slight speeding of high effort
responses in the 0.9 quantile of the response time distribution. Analysing RTs across the effort levels we find that there was a small but significant
negative association between RT and effort level (likelihood ratio test, ,}'2(2) =19.68, p < .001). Given this, it was important to include response time
as a covariate in the main analysis.

To ensure that the effects we observed were not due to differences in response time, we also conducted an additional analysis on a subset of the
original data. We first removed a percentage of the slowest responses in the low and medium effort conditions, equal to the difference in the percentage
of missed trials between the low and medium conditions and the high effort condition. Specifically, we removed the slowest 3.27% of trials in the low
condition, and the slowest 3.23% of trials in the medium condition. This left 6353 trials in the low condition, 6354 trials in the medium condition, and
6354 trials in the high condition.
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Fig. C.1. Response time quantiles calculated from the full dataset and the sub-setted data. These plots were created by vincentizing coirect and error RT quantiles
across participants, within the three effort levels. After sub-setting, response times were more closely matched across the effort conditions and the negative trend
between RT and effort is removed.

As intended, after sub-sampling the data, response times were no longer significantly different between the effort conditions (likelihood ratio test,
12(2) =0.81, p = .67; see Fig. C.1). Moreover, accuracy was not significantly different between the three effort conditions (likelihood ratio test, xz(z)
=0.30, p = .86). Critically however, there was still a significant effect of effort on decision confidence, with participants being more confident in high
effort responses (likelihood ratio test, y%(2) = 12.29, p = .002). This indicates that the effect of effort on confidence was not simply driven by dif-
ferences in response time or the proportion of missed responses across conditions.

Because of the differences in miss-rates between the effort levels, one additional concern might be that participants may have gradually learned to
associate high effort trials with high decision confidence. However, analysing only responses in the first —~10% of experimental trials (i.e. the first 50
trials) of the sub-setted dataset for each participant, we still observed a significant effect of effort on decision confidence (likelihood ratio test, XZ(Z) =
7.37, p = .025). This indicates that the current effects were also not driven by a gradual, learned association between high effort and high confidence.

Appendix D. Generalised linear mixed effects models

Though linear mixed-effects methods are commonly used in the confidence literature for multi-level data structures, a potential problem with
conventional linear models is that they do not appropriately address the non-normally distributed nature of confidence rating data. It has been
suggested that a generalised linear model with a beta distribution can overcome these issues, and that beta distributions are more appropriate for
modelling doubly bounded continuous data (Verkuilen & Smithson, 2012). To ensure that the effects were robust across these approaches, additional
analyses were conducted with generalised linear models using a beta distribution. Note, the model did not converge with all random slopes included,
so we removed the random slope for effort level but left in the slope for the interaction between accuracy and difficulty (when just a random slope for
effort was included the model also failed to converge).

The likelihood ratio test demonstrated that effort was a significant predictor of confidence, )(2[2) = 8.09, p = .018. Hence, the beta model also
supported the main hypothesis that effort is a significant predictor of increased confidence. Similar to the linear mixed-effects models described in the
main text, the model with effort (Table D.1) showed that high effort was significant (p = .014) but medium effort was not (p = .998). Confidence
ratings were also higher for correct, relative to error trials (p < .001) and faster RTs (p < .001). Finally, when analysing just the sub-set of data (see
Appendix C), effort was still a significant predictor of confidence, )(2(2) =10.40, p = .005.

Table D.1

Estimates from the full generalised linear (beta distribution) mixed-effects model.
Fixed effects Estimate CI D
(Intercept) 1.54 1.17-2.03 0.002
Medium effort 1.00 0.97-1.04 0.998
High effort 1.05 1.01-1.08 0.014
Timing (stimulus-locked) 1.06 1.03-1.09 <0.001
RT 0.74 0.72-0.75 <0.001
Accuracy (correct) 2.24 1.64-3.06 <0.001
Difficulty (easy) 0.67 0.58-0.77 <0.001
Accuracy*Difficulty 1.74 1.46-2.08 <0.001

Appendix E. Supplementary data

Supplementary data to this article can be found online at htips://doi.org/10.1016/j.cognition.2020.104525.
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